Thursday, July 2, 2015

Trigonometry Formulae & Identities for Exams Part 3rd

Following the sequence of last post on basics of Trigonometry I am continuing the basics of Trigonometry in this post too. Let’s prepare these trigonometric formulae and identities to get full hold on the questions of trigonometry which will help in Competitive Exams.
Trigonometric Functions of Acute Angles
Sinθ = P/H
Cosθ = B/H
Tanθ = P/B
Cosecθ = H/P
Secθ = H/B
Cotθ = B/P.

Relations between Trigonometric Functions

Sinθ = 1/Cosecθ
Cosθ = 1/Secθ
Tanθ = 1/Cotθ
Cosecθ = 1/Sinθ
Secθ = 1/Cosθ
Cotθ = 1/Tanθ
Tanθ = Sinθ/Cosθ
Cotθ = Cosθ/ Sinθ

Pythagorean Identities

Sin2θ + Cos2θ = 1    →  Sin2θ = 1 - Cos2θ     →  Cos2θ = 1 -  Sin2θ    

Sec2θ - Tan2θ = 1    →  Sec2θ = 1 + Tan2θ    →  Sec2θ -  1 = Tan2θ  
  Cosec2θ - Cot2θ = 1 →  Cosec2θ = 1 + Cot2θ  →  Cosec2θ -  1 = Cot2θ  

Addition Formulas

Sin(A + B) = SinA CosB + CosA sinB 

Sin(A - B) = SinA CosB  - CosA SinB

Cos(A + B) = CosA CosB - SinA SinB

Cos(A - B) = CosA CosB + SinA SinB

Tan(A + B) = [ TanA + TanB ] / [ 1 - TanA TanB]

Tan(A + B) = [ TanA - TanB ] / [ 1 + TanA TanB]

Cot(A + B) = [ CotA CotB - 1 ] / [ CotA + CotB]

Cot(A + B) = [ CotA CotB - 1 ] / [ CotA + CotB] 

Product to Sum/Difference Formulas

SinA CosB = (1/2) [ Sin (A + B) + Sin (A - B)] 

CosA SinB = (1/2) [ Sin (A + B) - Sin (A - B)] 

CosA CosB = (1/2) [ Cos (A + B) + Cos (A - B)] 

SinA SinB = (1/2) [ Cos (A - B) - Cos (A + B)] 

Consider A+B = C and A – B = D in above Formulae

Sum to Product Formulas

SinC + SinD = 2 Sin[ (C + D) / 2 ] Cos[ (C - D) / 2 ]

CosC + CosD = 2 Cos[ (C + D) / 2 ] Cos[ (C - D) / 2 ] 

Difference to Product Formulas


SinC - SinD = 2 Cos[ (C + D) / 2 ] Sin[ (C - D) / 2 ]

CosC - CosD = 2 Sin[ (C + D) / 2 ] Sin[ (D - C) / 2 ] 

Difference of Squares Formulas


Sin 2A - Sin 2B = Sin(A + B) Sin(A - B)

Cos 2B - Cos 2A = Sin(A + B) Sin(A - B) 

Cos 2A - Sin 2B = Cos(A + B) Cos(A - B)

Cos 2B - Sin 2A = Cos(A + B) Cos(A - B)

 Hope you have enjoyed the base concept of this chapter till now. More Conceptual enjoyment will be continued for you soon, just keep visiting this blog regularly and writing me your related queries through comment or forum.

Best of Luck for Exams. To be continued soon........................

No comments:

Post a Comment