Following
the sequence of last post on basics of Trigonometry I am continuing the basics
of Trigonometry in this post too. Let’s prepare these trigonometric formulae and identities to get full hold on the
questions of trigonometry which will help in Competitive Exams.
Trigonometric Functions of Acute
Angles
Sinθ = P/H
Cosθ = B/H
Tanθ = P/B
Cosecθ = H/P
Secθ = H/B
Cotθ = B/P.
Relations between Trigonometric Functions
Sinθ = 1/Cosecθ
Cosθ = 1/Secθ
Tanθ = 1/Cotθ
Cosecθ =
1/Sinθ
Secθ =
1/Cosθ
Cotθ =
1/Tanθ
Tanθ =
Sinθ/Cosθ
Cotθ =
Cosθ/ Sinθ
Pythagorean Identities
Sin2θ + Cos2θ
= 1 → Sin2θ = 1 - Cos2θ →
Cos2θ = 1 - Sin2θ
Sec2θ - Tan2θ = 1 → Sec2θ = 1 + Tan2θ → Sec2θ - 1 = Tan2θ
Cosec2θ - Cot2θ
= 1 → Cosec2θ
= 1 + Cot2θ → Cosec2θ - 1 = Cot2θ
Addition Formulas
Sin(A + B) = SinA CosB + CosA sinB
Sin(A - B) = SinA CosB - CosA SinB
Cos(A + B) = CosA CosB - SinA SinB
Cos(A - B) = CosA CosB + SinA SinB
Tan(A + B) = [ TanA + TanB ] / [ 1 - TanA TanB]
Tan(A + B) = [ TanA - TanB ] / [ 1 + TanA TanB]
Cot(A + B) = [ CotA CotB - 1 ] / [ CotA + CotB]
Cot(A + B) = [ CotA CotB - 1 ] / [ CotA + CotB]
Cos(A - B) = CosA CosB + SinA SinB
Tan(A + B) = [ TanA + TanB ] / [ 1 - TanA TanB]
Tan(A + B) = [ TanA - TanB ] / [ 1 + TanA TanB]
Cot(A + B) = [ CotA CotB - 1 ] / [ CotA + CotB]
Cot(A + B) = [ CotA CotB - 1 ] / [ CotA + CotB]
Product to Sum/Difference Formulas
SinA CosB = (1/2) [ Sin (A + B) + Sin (A
- B)]
CosA SinB = (1/2) [ Sin (A + B) - Sin (A
- B)]
CosA CosB = (1/2) [ Cos (A + B) + Cos (A
- B)]
SinA SinB = (1/2) [ Cos (A - B) - Cos (A + B)]
Consider A+B = C and A – B = D in above Formulae
Sum to Product Formulas
SinC + SinD
= 2 Sin[ (C + D) / 2 ] Cos[ (C - D) / 2 ]
CosC + CosD
= 2 Cos[ (C + D) / 2 ] Cos[ (C - D) / 2 ]
Difference to Product Formulas
SinC - SinD = 2 Cos[ (C + D) / 2 ] Sin[
(C - D) / 2 ]
CosC - CosD = 2 Sin[ (C + D) / 2 ] Sin[
(D - C) / 2 ]
Difference of Squares Formulas
Sin 2A
- Sin 2B = Sin(A + B) Sin(A - B)
Cos 2B - Cos 2A = Sin(A + B) Sin(A - B)
Cos 2B - Cos 2A = Sin(A + B) Sin(A - B)
Cos 2A
- Sin 2B = Cos(A + B) Cos(A - B)
Cos 2B - Sin 2A
= Cos(A + B) Cos(A - B)
Hope you have enjoyed
the base concept of this chapter till now. More Conceptual enjoyment will be
continued for you soon, just keep visiting this blog regularly and writing me
your related queries through comment or forum.
Best of Luck for Exams. To be continued soon........................
No comments:
Post a Comment